
CRITIQUE OF WARD SILVER’s Nov. 2019 

QST ARTICLE  

on 

TRANSMISSION LINE TRANSFORMERS  

and 

An INTRODUCTION to SMITH CHARTS  

By 

Ron Fredricks, K8DMR, 

 

Given at December, 2019, GRARA Meeting  



 

 

Refer to November 2019 QST for Full Article by N0AX 

In the following we will explain the theory behind ward’s Figure 1(A) and (1B)   



Lossless line equations showing voltage, current & impedance along a 

transmission line.  

We shall write the equations in terms of distance d from a load, Z_load, located at 

d = 0 with +d pointing back towards the generator and the assumed, common, 

single frequency time variation suppressed.  

V(d) =  V_load*cos(βd) +jI_load*Z0*sine(βd) 

I(d)  = I_load*cos(βd) +j(V_load/Z0)*sine(βd) 

Where V_load, I_load, V(d) and I(d) are complex phasors in general with 

magnitude & phase and 

Z0 is the transmission line impedance, typically 50 to 600 Ohms & β = 2*pi/λ. 

Recall from H.S. trig: cos(0) = cos(360) =1; cos(90) = 0; cos(180) = -1; cos(270 = 0)  

and sine(0) =sine(360) = 0; sine (90) = 1; sine(180) = 0 and sine(270) = -1 

The complex impedance, Z(d), seen by a generator at distance d from the load, is 

hence: 

Z(d) = V(d)/I(d) which after dividing N and D by cos(βd)  

and noting V_load/ I_load = Z_load we finally get 

Z(d) = Z_load*[1 + j(Z0/Z_load)*tan(βd)]/[1+j(Z_load/Z0)tan(βd)]     

where tan(βd) =   sine(βd)/cos(βd) 

 

  



Now back to the Ward Silver QST article.  Consider his Quarter Wave Line 

Here is what happens if we let βd = pi/2 (a quarter wavelength line) in the line 

equations for the impedance seen at the output of the quarter wave line: 

tan(βd) -> 1/0 = infinity so we must approach gradually to see what happens. 

Here tan(βd) is just assumed very large so it dominates in the Numerator and 

Denominator in the expression for Z(d) compared to the leading ones. 

Then  

Z(d=> λ/4) =>  Z_load*[j(Z0/Z_load)*tan(βd) ]/[ j(Z_load/Z0)*tan(βd)] 

After a lot of cancellations, we obtain: 

Z(d=> λ/4) = Z_load*(Z0/Z_load)/(Z_load/Z0)  

                   = Z0* Z0/Z_load = Z02/Z_load  

the desired result which can be rewritten as 

Z02 = Z(λ/4)*Z_load   or Z0 = SQRT(Z(λ/4)*Z_load) 

In N0AX’s QST article Z0 is called Z0 , Z(λ/4) is Z1 and Z_load is Z2. 

Note, the same transformation happens for d = any odd multiple of λ/4 

 

Interesting! 

 

  



Half Wavelength Line Analysis 

Next here is what happens if we let d = n* λ/2 (distance any multiple of a half 

wavelength)  

Then βd = (2*pi/ λ)*(n* λ/2) =n*pi   

And since tan (n*pi) = 0 for all integer values of n 

Z(d =  n* λ/2) = 

               Z_load*[1 + j(Z0/Z_load)*tan(n*pi)]/[1+j(Z_load/Z0)tan(n*pi)]  

              = Z_load (1+ j(Z0/Z_load)*0]/[1+j(Z_load/Z0)*0)]  

              = Z_load *1/1            = Z_load 

Thus, the load impedance always repeats every half wavelength away from the 

load regardless of the transmission line impedance. 

 

Also Interesting!      

  



 

Consider the 1/12 wavelength impedance transformers Silver shows in his 

Figure 1(B). 

 

The benefit here that no odd-ball impedance matching line is required.  All lines 

are Z1 or Z2. 

A typical example would be matching a 400 Ohm line(Z2) to a 50 Ohm line (Z1) 

using transmission lines assuming the load (an antenna typically) is matched to 

the 400 Ohm line. 

Working from right to left in Wards Figure 1B  we would have Z1(0) = Z_antenna  = 

400 Ω and we want to show Z2(L1) = 50 Ω which matches the left coax. 

While we could use the basic line equations twice to show (or not show as I 

claim) that two 1/12 wavelength lines can accomplish this match that would 

involve a lot of complex number arithmetic by hand or on a computer. 

Instead let’s try using a Smith Chart to obtain a graphical solution and show that 

this choice of cascaded 1/12 wavelength lines does (or does not) transform 400 

Ohms to 50 Ohms. (Smith Charts are on the Extra Class exam so this is good 

practice.) 

 



The Complex Reflection Coefficient & the Smith Chart 

Smith Charts were invented by Peter Smith in 1939 as a graphical alternative to 

solving the complex transmission line equations before digital computers. 

The Smith Chart graphs the complex reflection coefficient, Г, in terms of distance 

d from the load (antenna) or conversely distance s from the source (transceiver) 

where Gamma is a complex number with real part u and imaginary part v.  (I shall 

only use distance, d, from the load here.) 

Specifically, Г is the ratio of a forward propagating voltage wave on the line to a 

reverse propagating or reflected voltage wave on the line at any distance d from 

the load (antenna).  (The figure below shows the coefficient at the load but it can 

be measured anywhere along the line.) 

▪ Vi is incident voltage. 

▪ Vr is reflected voltage. 

 

Fig. 2   Reflection coefficient (Γ) 

  



Magnitude of Reflection Coefficient & Relation to SWR 

As noted, gamma is a complex number that changes along the line but its 

magnitude, | Г |, anywhere along the line is constant if we neglect losses. 

Thus 

Г (d) = u(d) +jv(d)   

but | Г | = square root (u2+ v2)  = constant for any d. 

Now it can be shown that there is a simple relationship between the magnitude of 

the reflection coefficient and the SWR, the latter which is also constant for all d 

neglecting losses. Namely, 

| Г | = (SWR – 1)/(SWR + 1) 

Equivalently 

SWR = (1 + | Г |)/( 1-| Г | ) = constant 

  

 

  



The Reflection Coefficient’s Phase angle 

In general as one moves away a distance d from the load Г  acquires a non-zero 

phase angle even if the load impedance were also a pure resistance like Z0. 

To see this refer to the proceeding figure again but assume we are a distance, d, 

away from the load.   

Then the incident wave is still a distance d from the load while the reflected wave 

has traveled up to and back from the load.  Defining the wavenumber β = 2*pi/λ 

where lambda is the wavelength this means that the reflected wave gains a phase 

angle of 2*β*d relative to the incident wave as one moves back from the load. 

Thus  

Г (d) = Г (0)*exp(- 2*β*d )  using phasor notation 

Where Г(0) is by definition Г_load, the reflection coefficient at the load.  The latter 

is itself also a complex number unless Z_load is a pure resistance. 

 

 

  



There is also a relationship between  Г(d) and  the line impedance Z(d) 

At the load Г (d) = Г (0) = u(0) + jv(0)  = ГLoad   

It can also be shown for any load impedance Z_load  that 

ГLoad = ( Z_load – Z0)/(Z_load + Z0) 

Similarly,  anywhere along the line we have 

Г (d) = (Z(d) – Z0)/(Z(d) + Z0)   

Where Z(d) = R(d) + jX(d) 

We shall normalize Z(d) by Z0.  Denote this normalization with a prime. 

Then Z’(d) = R(d)/Z0 + jX(d)/Z0 = r(d) + jx(d)  

where r and x are the normalized resistance and reactance at d from the load. 

Similarly, dividing both the numerator and denominator on the right hand side of 

the expression for Г (d)  by Z0 

Г (d) =u(d) + jv(d) = (Z’(d) – 1)/(Z’(d) + 1)  

Substituting for Z’(d) we now have a relationship between u, v and r,x namely 

u(d) + jv(d) = (r(d) – 1 +jx(d))/ (r(d) + 1 +jx(d)) 

  



 

Relationship between Г(d) and  the line impedance Z(d) continued… 

From all of this mathematics we have obtained a complex variable equation 

relating the real and imaginary components of Г, namely u and v respectively, to 

the real and imaginary parts of the normalized impedance Z’, namely r and x 

respectively, at any point along the line. 

Repeating this key relationship in terms of these 4 quantities we have: 

u(d) + jv(d) = (r(d) – 1 +jx(d))/ (r(d) + 1 +jx(d)) 

We actually have two scalar equations since the real parts of both sides of the 

equal sign must be equal and the imaginary parts of both sides must be equal. 

This means that any r,x pair in the Z’ plane will map into a corresponding u,v pair 

lying within the unit circle in the Г plane. Actually, there are multiple solutions but 

we throw out the non-physical ones corresponding to negative resistances r. 

This is useful for plotting the evolution of the line impedance as one moves a 

distance d from the load because, unlike the line impedance Z or the normalized 

line impedance Z’, the magnitude of Г is bounded by unity.  Further any value of 

normalized input impedance Z’ will map into a unique value of Г  inside the unit 

circle (no need for a huge sheet of linear graph paper to cover all physically 

realizable cases for analyzing typical “ham” antennas). 

  



THE SMITH CHART SOLVES THE LOSSLESS LINE EQUATIONS GRAPHICALLY FOR Z’(d) 

 

 

 

In the Smith Chart circles are constant r lines where r(d) = R(d)/Z0 and arcs are 

constant x lines where x(d) =X(d)/Z0. Really the arcs are also circles but only the 

portions with the unit circle correspond to physically realizable resistances 

normalized or unnormalized. 

The Smith chart expresses d in fractions of λ along its periphery.  A half 

wavelength distance (d = λ/2) corresponds to one full rotation around the 

periphery of the chart.   

 

 

 



 

To use a Smith Chart to show how a load impedance varies along a line: 

Plot Z’(0) on the chart as a point.  Draw a vector from the center of the chart (r=1, 

x=0 point) to Z’(0).   

Extend the vector to the chart periphery to determine how Z’ will change with 

distance from the load, d. 

Relative movement of the extended vector clockwise on the outer periphery 

denotes movement by a distance d toward the generator (transceiver here).   

Using a protractor set to the length of our initial normalized impedance vector, 

rotate the vector by the relative distance d along periphery in wavelengths. 

See where the original length vector falls inside chart.  This is the normalized load 

impedance at distance d. In other words this is impedance a load at d = 0 would 

present to an observer located at distance d feeding the load.   

To compute what impedance the measured impedance Z_gen at the generator 

would present at some distance d from the generator as we travel back towards 

the load (antenna) we would rotate in the opposite direction, i.e. 

counterclockwise, on the Smith chart periphery. This is useful in the practical case 

where one measures the impedance at the generator/transmitter and wants to 

know what impedance the antenna is actually presenting to the transmission line. 

(The total line length would be d then.)  We will not need this here but it shows 

another use of the Smith Chart.  There are lots more uses.   

 

 

 

 

 

 

 



Now back to Ward Silver’s cascaded 1/12 wavelength transformers: 

In the article we will need to use the Smith Chart twice to get the final impedance 

presented to the 50 Ohm line back to the transmitter at the output of the 400  

Ohm λ /12 section, Z2. 

 It is assumed that the antenna was properly matched to line Z1 so the length of 

that connecting line length does not matter. 

 

 

  



 

Let’s pull up a complete Smith Chart and try doing a double application of λ/12 = 

0.0833λ sections. 

The first section is 50 Ohms, the second is 400 Ohms.  

The normalized “load” input to Z1 namely  Z1’(0)  = [400+ j0]/50 = 8 + j0 Ohms.  

The renormalization for the second, 400 Ohm, section amounts to taking 50/400 = 

1/8 of the normalized output impedance from the first section as the “load” or 

starting impedance of the 2nd Section.  

We draw a vector from the chart “origin” at 1 +j0 to the load impedance of 8 + j0 

Rotating this vector by 0.0833 wavelength clockwise around the periphery 

corresponding to the, Z1, the first 1/12th wavelength section, we land on an 

intermediate normalized impedance of ~ 0.42 – j1.44.  

We multiply the normalized intermediate impedance by 50/400 to get the new 

normalized “load” impedance for the second section, Z2(0).  This comes out to be 

0.0525 – j0.18. 

We plot this point on the chart, draw a vector from the origin to 0.025 – j0.2 and 

again rotate this vector clockwise by another 0.08333 as we continue to move left 

toward the source in Figure 1B. 

Hopefully this puts us on 50/400 + j0 for the normalized impedance at the far left 

side of the Z2 section.   Un-normalizing by multiplying by 400 we should get the 

“load” impedance presented to the 50 Ohm coax back to the transceiver source 

to be 50 + j0 ohms. That would be a perfect match. 

 

 

  



Problem is my result was nowhere near a match to the 50 Ohm line to the 

generator.  Thus, there is doubt cast on the 1/12 wavelength transformer 

approach to impedance matching, at least in my opinion. 

Working backwards for this 50 to 400 ohm transformation example W8IMA, 

Richard, found out the two sections should be 0.051 wavelength sections (~ 1/20 

wavelength) rather than 1/12 (0.083) wavelength sections. 

Bottom line, the proper lengths L1 and L2 need to be tuned to the desired match! 

Thus, the magic 1/12 wavelength line transformer design is a hoax! 

Richard is sending our results to Ward Silver at QST 

Anyone want to point out what we are missing? 

 

Ron 

K8DMR 

 

Suggested Site: https://www.will-kelsey.com/smith_chart/# 



 

 

 


