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Use transmission lines to convert impedances.

H. Ward Silver, NOAX

In the previous article,! “About
Impedance-Matching Circuits,” we
discussed what impedance is, and
learned that what we call “impedance
matching” is really “impedance con-
verting.” We reviewed several circuits
and components that perform imped-
ance conversion.

This article covers other methods of
converting impedance using the
properties of transmission lines. Spe-
cial lengths, combinations, and con-
nections of feed lines can be used. At
antenna feed points, the same ideas
can be used to create structures that
convert impedances, too.

Feed Lines and Impedance
We start with a feed-line characteris-
tic impedance, abbreviated Z;. This
tells us what voltage and current are
created by power flowing in a feed
line. Just like in a circuit, Z, tells us
the ratio of voltage and current, but
this time, in the line.

To experience a mechanical ana-
logue of characteristic impedance,
get a small-diameter coffee stirrer
and a large-diameter drinking straw.
Blow a short, sharp puff of air
through each. Even though you blow
equally hard into each (voltage) you
get only a little air through the small
tube (current), but a lot of air gets
through the large one. The small tube
has a higher characteristic imped-
ance to pressure waves.
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Figure 1 — The quarter-wave and Vi.-wave
synchronous transformers. The series of
reflections created by the impedance mis-
matches at each end of the matching sec-
tions creates the impedance conversion.

Back to RF — if power flowing in a
feed line encounters some imped-
ance other than Z;, such as a differ-
ent type of feed line, the voltage and
current change abruptly at the junc-
tion. To create this change, the initial
wave splits into two; one in the new
feed line and one reflected back
toward the source in the original feed
line. Just like water waves reflecting
from a wall or rock, a pattern of inter-
ference is created between the
incoming forward wave and the
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reflected wave. Even though both
waves are moving, the voltage and
current interference patterns are sta-
tionary, called a standing wave. The
standing wave ratio (SWR) is the
ratio of the maximum to minimum
voltage or current in the pattern.
See the sidebar, “Explaining SWR in
Black and White.”

Hams are counseled to minimize
SWR, because standing waves cre-
ated by the reflected power have
higher peak voltages — increasing
dielectric loss — and higher peak
currents — increasing resistive loss.
Feed line loss in general is dissipa-
tion of the RF signal as heat by any
means; dielectric loss occurs in the
insulation between the center con-
ductor and shield, caused by the ac
voltage between the conductors.
Resistive loss is caused by the resis-
tance of the center conductor and
shield to ac current, and is propor-
tional to the square of the current. As
frequency increases, so do both
dielectric and resistive losses.

In addition, after the reflected power
makes its way back to the source,
such as a transmitter, it can be
reflected again, heading back to the
load or the antenna. Each unwanted
extra trip through the feed line results
in loss, until all of the power is either
transferred to the load or dissipated
as heat. To avoid loss, we try to
match the line and load impedances,
minimizing reflections and SWR.

Refer toNovember 2019 QSdr Full Article by NOAX
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Lossless line equations showing voltage, current & impedance along a
transmission line.

We shall write the equations in terms of distar®éom a load,Z load, locatedat
d = 0 with € pointingback towardgshe generatorandthe assumegdcommon,
single frequencyime variation suppressed.

vd) = V_load*cos(d) +jl_loadZ0sine( d)
I(d) | _load*cos(d) +j(V_loadZz0*sine( d)

Where V_load, |_load, ¥ and I¢l) are complex phasoia generalwith
magnitude & phasand

Z0is the transmission line impedance, typicallyt6@00 Ohms& | ' HFLAK<O®
Recalfrom H.S. trigcos(0) =os(360) #; cos(90) = 0; cas80) =1; cos(270 = 0)
and sine(0) =sine(360) = 0;s(®0) = 1, sine(180) = 0 and sine(276) =

Thecompleximpedance Z(d), seen by a generatat distanced from the load is
hence

Zd) = V(d)/I(d) whichafter dividing N and D by cos)

and noting V_load! load = Z_loade finally get

Z(d) = Z badql + j(Z0Z_load)*tan( d))/[1+j(Z_loadZzOtan( d)]
where tan( d) = sine(d)/cos( d)




Now back to the Ward Silver QST article. ConsideQusirter Wave Line

Here is what happensyie leti R pi/2 @ quarter wavelength linen the line
equationsfor the impedance seen at the output of the quarter wave line

tan( d) ->1/0 = infinity so we must approach gradually to see what happens.
Heretan( d) is justassumedvery large so it dominates the Numeratorand
Denominatorin the expressiofor Z(d)compared to the leading ones.

Then
Z(d=>=< k #>Z_load*[jg0Z_load)*tan( d) /[ j(Z_loadZOQ*tan( d)]
After a lot ofcancellatiors, we obtain:
Z(d=>< k nZ) load*Z0Z_load)/(Z_loadz0
=70 Z0Z_load=ZC/Z_load
the desired resulwvhich can be rewritten as
ZF=Z Kk n 0 %LPZ02SORTE(k BN Lyt 2 RO
LYy bn! - QA&aZz0is ¢alled & NIv50 Gfadl &_loAdadsZ s

Note, the same transformation happens for d = any odd multipke4of

Interesting!




Half Wavelength LinéAnalysis

Next here is what happens if we let= n*< k(distanceany multiple of a half
wavelength)

Theni R (2*pi/ < ¢ < B) =n*pi
And since tan (n*pi) = O for all integer values of n
Z(d=n*< KA
Z load*[1 + ZQZ load)*tanf*pi)])/[1+)(Z_loadZOQtan(n*pi)]
= Z load (1+40Z_load)*0)/[1+j(Z_loadZ(0*0)]
=Z load *1/1 =Z load

Thusthe load impedance always repeats every half wavelength away from the
loadregardlesf the transmission line impedance.

Alsolnteresting!




Considerthe 1/12 wavelength impedance transformeiSilver shows irhis
Figure 1(B).
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The benefit here that no oddall impedance matching line is required. All lines
areZ or 2.

A typical example would be matchingl@0 Ohm lin€2) to a 50 Ohm lin€z)
using transmission lines assuming the I¢and antenna typicallyis matched to
the 400 Ohm line.

Working from right to left inNVardsFigure 1Bwe would havez;(0) = Zantenna =
400 mand we want to showz6 [ m 0 wWhichpnmatchs the left coax.

While we could use the badine equations twice to showWor not show as |
claim)that two 1/12 wavelength lines can accomplish this matadt would
involve a lot of complex numbearithmeticby hand or on a computer

LyYyadSIFER fSGQa GNE dagaphigal sblutigravid shaw thatK I NI
this choice of cascaded 1/12 wavelength lines deesloes nottransform400

Ohms to 50 OhmgSmith Charts are on the Extra Classesa this is good

practice.)



The Complex Reflection Coefficient & the Smith Chart

Smith Charts were invented by Peter Smith in 1939 as a graphical alternative to
solving the complex transmission line equations before digital computers.

Thef YAGK / KF NI 3INI LKA (§KS ,d2eNrislof 8ianddS ¥t SO
d from the load (antenna) or conversely distance s from the source (transceiver)

where Gamma is a complex number with real part u and imaginary p&rshall

only usedistance d, from the load here.

{LISOATFAOFIff&X 1 A& GKS NIXaGA2z2 2F | F2NB!
reverse propagating or reflected voltage wave on the line at any distance d from

the load (antenna)(The figure below shows the coefficientthe load but it can

be measured anywhere along the line.)

A Viis incident voltage.
A Vris reflected voltage.
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Magnitude of Reflection Coefficient & Relation to SWR

As noted gamma is a complex numb#rat changes along the lifaut its
magnitude | 1 agmyavhere along the line is constahive negleclosses.

Thus
1(d)= ud) +\(d)
but|1T p T &l dzkhNKonbi@nefar ang diz

Nowit can be shown that there is a simple relationship between the magnitude of
the reflection coefficient and the SWhe latterwhich is also constant for all d
neglecting losses. Namely,

|1 u T 1HSWRw 1)
Equivalently
SWR=(1+1 M4 k| = constant




The Reflection Coefficief Bhase angle

Ly 3ISYSNIXYft Fa 2yS Y20Sa haglirganonz&td adl yO
phase angle even if the load impedance were also a pure resistan&like

N>

To see this refer to the proceeding frguagain buassumewe are a distanced,
away from the load.

Then the incident wave is still a distance d from the load while the reflected wave
has traveled upo and backrom( KS f 2 R® 5 ST A VIA VigF LOAKKS< 6
wherelambda is the wavelength this means that the reflected wave gains a phase
angle2 ¥ HFi FR NBfFGAGBS (G2 GKS AYyOARSYyl o6l

Thus
1 0RO T-HFIGROPSEWWBAY I LKI&2N y2iGl GA2Y

2 KSNBE 10n0 A& o0 ereflrRcioh kogficiernt & tie Idadithelattét > 1 K S
Is itself also a complex numbenlessZ_load is a pure resistance.



There isalsoa relationship between1(d) and the line impedance Z(d)
l'd GKS £2FR 1 O0RWal 1 000 I dz6n0 b 206
It can alsdoe shownfor any load impedance Z loatiat
lwad= ( Z_load; Z0/ (Z_load 0
Similarly, anywhere along the line we have
1 & @&l 2o/ (Z(d) +20
Where Z(d) = R(d) + jX(d)
We shall normalize Z(d) &0 Denote this normalization with a prime
¢ KSY %Qa&RpX(dfjZ0=w(d)R jx()
where r and x are the normalized resistance and reactanckfrom the load

Similarly dividingboth the numerator and denominator on the right hand sife
the expression fot  dyZ0

1 60RO CUMRR LI -RORRL b MU
{ dzo & G A ( dziwe yidlv have aN@latadshiR Between u, v and r,x namely
u(d) + jv(d) = (r(d) 1 +jx(d)y (r(d)+1 +jx(d))



RSt I A2y a K XdLand tBdiigednfpgdante Z(dontinuedX

From all of thisnathematics we have obtained a complex variable equation
NEBftFaGAYy3a G0KS NBI T |y, kamayanavesgedtidelyi® 2 Y L2 y S
the real and imaginary par@ ¥ G KS y 2 NXY I f Jndn®Rrakd%LISRI y OS
respectivelyat any point along the line.

Repeating this key relationship in terms of these 4 quantities we have:
u(d) + jv(d) = (r(dg 1 +jx(d))/ (r(d) + 1 +jx(d))

We actually have two scalar equations sitioe real parts of both sides of the
equal sign must be equal and the imaginary partsaih sides must be equal.

This means that any r,x pair in th&afane will map into a corresponding u,v pair
feAyad 6AGKAY GKS Ayalyihe® ardlduttiBe salyfionsibatS 1 L
we throw out the nonphysical ones corresponding to neyat resistances r.

This is usefuor plotting the evolution of the line impedance as one moves a

distance d from the loalecauseunlike the line impedancg or the normalized

f AYS AYLISKRS YWOS3yaQrdzZRS 2 F . Furthetany daudnf RS R 6
normalized input impedancé2Q @A f f Y I LI Ay (idside thedayfitA |j dzS ¢
circle(no need for a hugsheet of linear graph paper to cover all physically

realizable cases famalyzingi @ LA OF f aKIF Yé yaSyylraoo



THE SMITH CHART SOLVESQSESLEENEEQUATIONS GRAPHICALLY &R Z

Constant resistance and reactance circles plotted together

In the Smith Charticles are constant r lines where r(d) = RZf)And arcs are
constant x lines where x(d) =X(@)Y Really the arcs are also circlag only the
portions with the unit circle correspond to physically realizable resistances
normalized or unnormalized.

The Smith kart expresses d in fractionsof I £ 2y 3 A ABf LIS NA LIK S NEB
wavelength distance (8 /2kcorresponds to one full rotativaround the
peripheryof the chart



To use a Smith Chart to show how a load impedance varies along a line

tf20 »%Qonv 2y (KS OKIFINI a | LRAYy(G® 5 N
El'n LRAYyGOD (2 %Qé6n0®

Extendthe vector tothe chartpeNA LIK SNE (2 RwWlcikanggihy S K2 &
distance from the load,.d

Relative movement of the extended vector clockwise on the outer periphery
denotes movement by a distance d towale generator(transceiver here)

Using a protractor set tthe lengh of our initial normalized impedanceector,
rotate the vector bythe relative distance d along peripheny wavelengths

See wherdhe original length vector falls inside chart. This is the normalized load
impedance at distance ¢h other wordsthis isimpedance a load at d = 0 would
present to a observelocated at distance d feeding the load.

To compute what impedandbe measuredmpedance Z_geat the generator

would present at some distanakfrom the generatoras we travel back towards

the load (antennajve would rotatein the oppositedirection, i.e.

counterclockwiseon the Smithchartperiphery.This is useful in the practical case
where one measures thenpedanceat the generator/transmitter and wants to

know what impedance the antenna is actually presenting to the transmission line.
(The total line length would be d thenWe will not need thiserebut it shows
another use of the Smith Chart. There are lotgengses



Now back to Ward SiveXda OF a OF RSR mMkmu pl @St Sy 3

In thearticlewe will need to use the Smith Chawice to get the final impedance
presented tothe 50 Ohm line back to the transmitter at the output of #@0

Ohm</12 section 2.

It is assumed that the antenna was properly matched to li®o4he length of
that connectingine lengthdoes not matter.
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Figure 1 — The quarter-wave and “i.-wave
synchronous transformers. The series of
reflections created by the impedance mis-
matches at each end of the matching sec-
tions creates the impedance conversion.



[ S ipull &p a complete Smith Chart and try doing a double applicatiorxtf2 =
0.083%x aSOiAz2yao

The first section is 50hms the seconds 400 Ohms.
¢ KS y 2 NI finplttsRnaméh2ZiQ® §11400+ jQF50 =8 + jo Ohms.

The enormalization for the second00 Ohm, section amounts to taking 800 =

1/8 of the normalized output impedanc®&2 ¥ (1 KS FANR G aSOGAZ2Y

starting impedance of the"? Section.

We draw avectorfromi KS OKF NI G2NRAIAYE |G m ben

Rotatingthis vectorby 0.0833 wavelength clockwise around the periphery
corresponding tdhe, Z1,the first 1/12" wavelengthsection we land on an
intermediate normalized impedance of 4@ j1.44.

We multiply the normalized intermediate impedance by &) to get thenew
V2NXIF AT SR af 21 Ré A YLISRED®).yTOScomedio BeK S
0.0525¢j0.18.

We plot this point on the chart, draw a vector from the origin to2%Q j0.2 and
againrotate this vectorclockwiseby another0.08333as wecontinue tomove left
toward the source in Figure 1B.

Hopefullythis puts us on 5@100 + jO for the normalized impedance at the far left
side of the Zsection. Un-normalizing by multiplying b#00 weshouldget the

Gf 21 R¢ A Y LIS Rio th©3D OhdNBax BaykiioSHe transceiver source
to be 50 + j0 ohmsThat would be a perfect matc

Q)¢
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Problem iamy result was nowhere near a match to the 50 Ohm line to the
generator. Thus there is doubt cast on the 1/12 wavelength transformer
approachto impedance matchinggt least in my opinion.

Working backwards for this 50 to 400 ohransformation example W8IMA,
Richard, found out the two sections should be 0.051 wavelength sections (~ 1/20
wavelength) rather than 1/120.083)wavelength sections.

Bottom line the proper lengths L1 and L2 need to be tuned to the desired match!
Thus,the magic 1/12 wavelengtline transformer designis a hoax!
Richard is sendingur resultsto Ward Silver at QST

Anyone want tgooint out what we are missirg

Ron

K8DMR

Suggested Sitehttps://www.will -kelsey.com/smith_chart/#






